Wall sandwich panel
ROMA AFP 060,
one side perforated
of the company Romakowski

Measurement of sound absorption in the
reverberation room according to
DIN EN ISO 354

Test Report No. M83419/08

Client: Romakowski GmbH & Co. KG
Postfach 53
86644 Buttenwiesen
GERMANY

Consultant: M. Eng. Philipp Meistring

Report date: 2019-08-08

Delivery date of test object: 2019-08-08

Date of test: 2019-08-08

Total number of pages: In total 16 pages, thereof
6 pages text,
1 page Appendix A,
3 pages Appendix B,
2 pages Appendix C and
4 pages Appendix D.
Table of contents

1 Aufgabenstellung 3
2 Basis 3
3 Test conditions and test objects 3
4 Test procedure 5
5 Evaluation 5
6 Measurement results 5
7 Remarks 6

Appendix A: Test certificates
Appendix B: Pictures
Appendix C: Drawings of the test objects
Appendix D: Description of test method, test facility and test equipment
1 Aufgabenstellung

On behalf of the company ROMA-Dämmsysteme, Romakowski GmbH & Co. KG, 86647 Buttenwiesen, Germany the sound absorption coefficient of wall sandwich panels of the type ROMA AFP 060 with one sided perforated decking was to be determined in the reverberation room according to DIN EN ISO 354 [1].

The results are to be evaluated according to DIN EN ISO 11654 [2] and ASTM C 423 [1].

2 Basis

This test report is based on the following standards:

3 Test conditions and test objects

3.1 Test conditions

The test assembly was mounted according to DIN EN ISO 354 [1], section 6.2.1 as type A according to Appendix B.

The assembly of the test object was carried out by employees of the client on the day of testing.
3.2 Test objects

The wall sandwich panels, type ROMA AFP 060, one side perforated are built up as follows (from top to bottom):

- 0.6 mm plastic coated perforated steel skin layer \(t = 0.6 \text{ mm} \), perforation type DIN 24041 – Rv 4 – 7: round perforation in staggered rows, size of hole (diameter) \(w = 4 \text{ mm} \), hole pitch \(p = 7 \text{ mm} \), percentage of perforation \(A_0 = 30 \% \) holohedral perforated, imperforated border (width approx. 40 mm) alongside the longitudinal edges

- approx. 60 mm core layer: mineral fibre insulation, adjusted to web (fibers vertical to skin layers), density > 100 kg/m³ (acc. to manufacturer’s information), covered with glass fleece on the side of the perforated skin layer

- 0.5 mm plastic coated steel skin layer \(t = 0.5 \text{ mm} \)

Bondings of skin layers with core layer are factory-made with a polyurethane adherence system.

The test assembly was made of three equal sized part elements. The elements had the following dimensions and masses (specification determined by testing laboratory):

- dimensions \(L \times W \times H = 3000 \text{ mm} \times 1150 \text{ mm} \times 60 \text{ mm} \)

- mass \(m = 47.5 \text{ kg} \)

- area specific mass \(m'' = 13.8 \text{ kg/m}^2 \)

The elements were positioned on the floor of the reverberation room with the perforated side top. The part elements were jointed alongside the profiled longitudinal edge in practical arrangement. The clearance between the elements was adjusted corresponding to the practical-oriented value.

The test object was bordered circumferential by an enclosing frame made of 19 mm thick wood composite panels (frame height 60 mm).

The joints between the frame and the floor of the reverberation room as well as between the frame and the test object were sealed with adhesive tape.

The total dimensions of the test area (excl. enclosing frame) were \(length \times width = 3470 \text{ mm} \times 3000 \text{ mm} = 10.41 \text{ m}^2 \).

Photographs of the test assembly on the floor of the reverberation room can be seen in appendix B. Appendix C contains manufacturer’s drawings of the test object.
4 Test procedure
The measurements of the sound absorption in the reverberation room were effected according to DIN EN ISO 354 [1].
Test procedure, test facility and test equipment used are listed in Appendix D.

5 Evaluation
The sound absorption coefficient α_S was determined in one-third octave bands in the range of 100 Hz...5000 Hz according to DIN EN ISO 354 [1].
In addition to the sound absorption coefficients the following characteristic values were determined according to DIN EN ISO 11654 [2].
- Practical sound absorption coefficient α_p in octave bands
- Weighted sound absorption coefficient α_w as single value
 The weighted sound absorption coefficient α_w is determined from the practical sound absorption coefficients α_p in the octave bands of 250 Hz to 4000 Hz.
According to ASTM C 423 [1] the following characteristic values were determined:
- noise reduction coefficient NRC as single value:
 Arithmetical mean value of the sound absorption coefficients in the four one-third-octave-bands 250 Hz, 500 Hz, 1000 Hz and 2000 Hz; mean value rounded to 0.05
- sound absorption average SAA as single value:
 Arithmetical mean value of the sound absorption coefficients in the twelve one-third-octave-bands between 250 Hz and 2500 Hz; mean value rounded to 0.01

6 Measurement results
The sound absorption coefficients α_S in one third-octave bands, the practical sound absorption coefficients α_p in octave bands and the single values (α_w, NRC and SAA) are indicated in the test certificate in Appendix A.
7 Remarks

The test results exclusively relate to the investigated subjects and conditions described

M. Eng. Philipp Meistring
(Project manager)

This test report may only be published, shown or copied as a whole, including its appendices. The publishing of excerpts is only possible with prior consent of Müller-BBM.
Sound absorption coefficient ISO 354
Measurement of sound absorption in reverberation rooms

Client: Roma DÄMM-SYSTEME, Romakowski GmbH und Co. KG,
Herdweg 31, D-86647 Buttenwiesen

Test specimen: ROMA wall sandwich element AFP 060, one side perforated

Test object:
- Wall sandwich element type ROMA AFP 060, one side perforated
- Test set-up (from top to bottom):
 - 0.6 mm plastic coated perforated steel skin layer \(t = 0.6 \text{ mm} \),
 perforation type DIN 24041 - Rv 4 - 7;
 percentage of perforation \(A_0 = 30 \% \),
 perforated all-over, imperforated border alongside the longitudinal edges
 - approx. 60 mm core layer: mineral fibre insulation, adjusted to web (fibers vertical to skin layers), density \(\rho > 100 \text{ kg/m}^3 \) (acc. to manufacturer's information),
 covered with glass fleece on the side of the perforated skin layer
 - 0.5 mm plastic coated steel skin layer \(t = 0.5 \text{ mm} \) (imperforated)
 - floor of the reverberation room
- bondings of skin layers with polyurethane adherence system
- area specific mass \(m'' = 13.8 \text{ kg/m}^2 \), determined by the mass of a test object

Test arrangement:
- mounting type A according to EN ISO 354
- 3 elements (each length x width x height = 3000 mm x 1150 mm x 60 mm) laid flatly, with the perforated cover on top on the reverberation room floor
- element joints with slot spring profiles of the elements in practical arrangement
- circumferential enclosing frame made of 19 mm thick wood composite panels (frame height 60 mm).
- test surface (inside the enclosing frame) length x width = 3470 mm x 3000 mm

Room: Hallraum E
Volume: 199.60 m³
Size: 10.41 m²
Date of test: 2019-08-08

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>(\alpha_s) 1/3 octave</th>
<th>(\alpha_p) octave</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.22</td>
<td>0.35</td>
</tr>
<tr>
<td>125</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>160</td>
<td>0.56</td>
<td>0.35</td>
</tr>
<tr>
<td>200</td>
<td>0.77</td>
<td>0.90</td>
</tr>
<tr>
<td>250</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>315</td>
<td>0.97</td>
<td>0.90</td>
</tr>
<tr>
<td>400</td>
<td>1.06</td>
<td>1.00</td>
</tr>
<tr>
<td>500</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>630</td>
<td>1.08</td>
<td>1.00</td>
</tr>
<tr>
<td>800</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>1000</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>1250</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>1600</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>2000</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>2500</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>3150</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>4000</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>5000</td>
<td>0.91</td>
<td></td>
</tr>
</tbody>
</table>

\(\alpha_s \) Sound absorption coefficient according to ISO 354
\(\alpha_p \) Practical sound absorption coefficient according to ISO 11654

\[\theta \quad \text{r. h.} \quad B \]
\[\text{without specimen} \quad 22.7 \quad 68.8 \quad 95.2 \]
\[\text{with specimen} \quad 22.8 \quad 70.4 \quad 95.1 \]

Rating according to EN ISO 11654:
Weighted sound absorption coefficient \(\alpha_w = 1.00 \)
Sound absorption class: A

Rating according to ASTM C423:
Noise Reduction Coefficient \(NRC = 1.00 \)
Sound Absorption Average \(SAA = 0.98 \)

MÜLLER-BBM Planegg, 2019-08-08 Appendix A Page 1
Wall sandwich element type ROMA AFP060, one side perforated

Figure B.1. Element section with connecting profile (slot side).

Figure B.2. Element section with connecting profile (key side).
Wall sandwich element type ROMA AFP060, one side perforated

Figure B.3. Element section at element joint.

Figure B.4. Perforated surface, perforation type DIN 24041 – Rv 4 – 7
Wall sandwich element type ROMA AFP060, one side perforated

Figure B.5. Test arrangement: detail element joint and enclosing frame.

Figure B.6. Test arrangement in the reverberation room.
Wall sandwich element type ROMA AFP060, one side perforated

Manufacturer's drawings (without scale, dimensions in mm)

Schnitt A - A

Wandsandwichelement
Typ ROMA AFP060 mit beidseits verzinkten, kunststoffbeschichteten Stahldeckschichten, t=0,6/0,5 mm, eine Stahldeckschicht mit Akustiklochung und Glasfaservlies als Rieselschutz, und Mineralwolle, steggerichtet, Dichte > 100 kg/m³, Verklebung mit polyurethanbasiertem Klebcsystem

Figure C.1. Test arrangement in the reverberation room.
Wall sandwich element type ROMA AFP060, one side perforated

Manufacturer’s drawings (without scale, dimensions in mm)

Figure C.2. Isometric drawing of the wall sandwich element.

Figure C.3. Detail drawing: element joint.
Description of the test procedure for the determination of the sound absorption in a reverberation room

1 Measurand

The sound absorption coefficient α of the test object was determined. For this purpose the mean value of the reverberation time in the reverberation room with and without the test object was measured. The sound absorption coefficient was calculated using the following equation:

$$\alpha_s = \frac{A_T}{S}$$

$$A_T = 55.3 \, V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1} \right) - 4 \, V \, (m_2 - m_1)$$

With:
- α_s: sound absorption coefficient;
- A_T: equivalent sound absorption area of the test object in m2;
- S: area covered by the test object in m2;
- V: volume of the reverberation room in m3;
- c_1: propagation speed of sound in air in the reverberation room without test object in m/s;
- c_2: propagation speed of sound in air in the reverberation room with test object in m/s;
- T_1: reverberation time in the reverberation room without test object in s;
- T_2: reverberation time in the reverberation room with test object in s;
- m_1: power attenuation coefficient in the reverberation room without test object in m$^{-1}$;
- m_2: power attenuation coefficient in the reverberation room with test object in m$^{-1}$.

The different dissipation during the sound propagation in the air was taken into account according to paragraph 8.1.2 of DIN EN ISO 354 [1]. The calculation of the power attenuation coefficients was effected according to ISO 9613-1 [2]. The climatic conditions during the measurements are indicated in the test certificates.

Information on the repeatability and reproducibility of the test procedure are given in DIN EN ISO 354 [1].

2 Test procedure

2.1 Description of the reverberation room

The reverberation room complies with the requirements according to DIN EN ISO 354 [1].

The reverberation room has a volume of $V = 199.6$ m3 and a surface of $S = 216$ m2.
Six omni-directional microphones and four loudspeakers were installed in the reverberation room.

In order to improve the diffusivity, six composite sheet metal boards dimensioned 1.2 m x 2.4 m and six composite sheet metal boards dimensioned 1.2 m x 1.2 m were suspended curved and irregularly.

Figure D.1 shows the drawings of the reverberation room.

Figure D.1. Plan view and sections of the reverberation room.
2.2 Measurement of reverberation time

The determination of the impulse responses was carried out according to the indirect method. In all tests, a sinusoidal sweep with pink noise spectrum was used as test signal. In the reverberation room with and without test objects each 24 independent combinations of loudspeakers and microphones were measured. The reverberation time was evaluated according to DIN EN ISO 354 [1], using a linear regression for the calculation of the reverberation time \(T_{20} \) from the level of a backward integrated impulse response.

The determined reverberation times in the reverberation room with and without test object are indicated in table D.1.

<table>
<thead>
<tr>
<th>Frequency (f) / Hz</th>
<th>Reverberation time (T / s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_1) (without test object)</td>
</tr>
<tr>
<td>100</td>
<td>5.08</td>
</tr>
<tr>
<td>125</td>
<td>5.53</td>
</tr>
<tr>
<td>160</td>
<td>5.53</td>
</tr>
<tr>
<td>200</td>
<td>5.08</td>
</tr>
<tr>
<td>250</td>
<td>5.13</td>
</tr>
<tr>
<td>315</td>
<td>4.89</td>
</tr>
<tr>
<td>400</td>
<td>5.26</td>
</tr>
<tr>
<td>500</td>
<td>5.23</td>
</tr>
<tr>
<td>630</td>
<td>5.08</td>
</tr>
<tr>
<td>800</td>
<td>4.81</td>
</tr>
<tr>
<td>1000</td>
<td>5.09</td>
</tr>
<tr>
<td>1250</td>
<td>5.16</td>
</tr>
<tr>
<td>1600</td>
<td>5.20</td>
</tr>
<tr>
<td>2000</td>
<td>4.93</td>
</tr>
<tr>
<td>2500</td>
<td>4.35</td>
</tr>
<tr>
<td>3150</td>
<td>3.70</td>
</tr>
<tr>
<td>4000</td>
<td>2.98</td>
</tr>
<tr>
<td>5000</td>
<td>2.60</td>
</tr>
</tbody>
</table>
2.3 List of test equipment

The test equipment used is listed in Table D.2

Table D.2. Test equipment.

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Serial-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD-/DA-converter</td>
<td>RME</td>
<td>Fireface 802</td>
<td>23811470</td>
</tr>
<tr>
<td>Amplifier</td>
<td>APart</td>
<td>Champ 2</td>
<td>09050048</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>Müller-BBM</td>
<td>DOD360A</td>
<td>372828</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>Müller-BBM</td>
<td>DOD360A</td>
<td>372829</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>Müller-BBM</td>
<td>DOD360A</td>
<td>372830</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>Müller-BBM</td>
<td>DOD360A</td>
<td>372831</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M370</td>
<td>1355</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M370</td>
<td>1356</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M360</td>
<td>1786</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M360</td>
<td>1787</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M360</td>
<td>1788</td>
</tr>
<tr>
<td>Microphone</td>
<td>Microtech</td>
<td>M360</td>
<td>1789</td>
</tr>
<tr>
<td>Microphone power supply</td>
<td>MFA</td>
<td>IV80F</td>
<td>330364</td>
</tr>
<tr>
<td>Hygro-/Thermometer</td>
<td>Testo</td>
<td>Saveris H1E</td>
<td>01554624</td>
</tr>
<tr>
<td>Barometer</td>
<td>Lufft</td>
<td>Opus 10</td>
<td>030.0910.0003.9.4.1.30</td>
</tr>
<tr>
<td>Software for measurement and evaluation</td>
<td>Müller-BBM</td>
<td>Bau 4</td>
<td>Version 1.11</td>
</tr>
</tbody>
</table>